Abstract

In three-dimensional videos (3-DVs) with ${n}$ -view texture videos plus ${n}$ -view depth maps, virtual views can be synthesized from neighboring texture videos and the associated depth maps. To evaluate the system performance or guide the rate-distortion-optimization process of 3-DV coding, the distortion/PSNR of the virtual view should be calculated by measuring the quality difference between the virtual view synthesized by compressed 3-DVs with one synthesized by uncompressed 3-DVs, which increases the complexity of a 3-DV system. In order to reduce the complexity of 3-DV system, it is better to estimate virtual view distortions/PSNR directly without rendering virtual views. In this paper, the virtual view synthesis procedure and the distortion propagation from existing views to virtual views are analyzed in detail, and then a virtual view distortion/PSNR estimation method is derived. Experimental results demonstrate that the proposed method could estimate PSNRs of virtual views accurately. The squared correlation coefficient and root of mean squared error between the estimated PSNRs by the proposed method and the actual PSNRs are 0.998 and 2.012 on average for all the tested sequences. Since the proposed method is implemented row-by-row independently, it is also friendly for parallel design. The execute time for each row of pictures with $1024 {\times }768$ resolution is only 0.079 s, while for pictures with $1920 {\times }1088$ resolution it is only 0.155 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.