Abstract
The fluid-structure interaction simulation of detonation- and shock-wave-loaded fracturing thin-walled structures requires numerical methods that can cope with large deformations as well as topology changes. We present a robust level-set-based approach that integrates a Lagrangian thin shell finite element solver with fracture and fragmentation capabilities with an Eulerian Cartesian detonation solver with optional dynamic mesh adaptation. As an application example, the rupture of a thin aluminum tube due to the passage of an ethylene-oxygen detonation wave is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.