Abstract

AbstractDaily new snow water equivalent (HNW) and snow depth (HS) are of significant practical importance in cryospheric sciences such as snow hydrology and avalanche formation. In this study we present a virtual network (VN) for estimating HNW and HS on a regular mesh over Switzerland with a grid size of 7 km. The method is based on the HNW output data of the numerical weather prediction model COSMO-7, driving an external accumulation/melting routine. The verification of the VN shows that, on average, HNW can be estimated with a mean systematic bias close to 0 and an averaged absolute accuracy of 4.01 mm. The results are equivalent to the performance observed when comparing different automatic HNW point estimations with manual reference measurements. However, at the local scale, HS derived by the VN may significantly deviate from corresponding point measurements. We argue that the VN presented here may introduce promising cost-effective options as input for spatially distributed snow hydrological and avalanche risk management applications in the Swiss Alps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.