Abstract
In semiconductor manufacturing plants, monitoring physical properties of all wafers is crucial to maintain good yield and high quality standards. However, such an approach is too costly, and in practice, only few wafers in a lot are actually monitored. Virtual metrology (VM) systems allow to partly overcome the lack of physical metrology. In a VM scheme, tool data are used to predict, for every wafer, metrology measurements. In this paper, we present a VM system for a chemical vapor deposition (CVD) process. On the basis of the available metrology results and of the knowledge, for every wafer, of equipment variables, it is possible to predict CVD thickness. In this work, we propose a VM module based on least angle regression to overcome the problem of high dimensionality and model interpretability. We also present a statistical distance‐based clustering approach for the modeling of the whole tool production. The proposed VM models have been tested on industrial production data sets. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Stochastic Models in Business and Industry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.