Abstract
With the rapid growth of energy costs and the constant promotion of environmental standards, energy consumption has become a significant expenditure for the operating and maintaining of a cloud data center. To improve the energy efficiency of cloud data centers, in this paper, we propose a Virtual Machine (VM) scheduling strategy with a speed switch and a multi-sleep mode. In accordance with the current traffic loads, a proportion of VMs operate at a low speed or a high speed, while the remaining VMs either sleep or operate at a high speed. Commensurate with our proposal, we develop a continuous-time queueing model with an adaptive service rate and a partial synchronous vacation. We construct a two dimensional Markov chain based on the total number of requests in the system and the state of all the VMs. Using a matrix geometric solution, we mathematically estimate the energy saving level and the response performance of the system. Numerical experiments with analysis and simulation show that our proposed VM scheduling strategy can effectively reduce the energy consumption without significant degradation in response performance. Additionally, we establish a system utility function to trade off the different performance measures. In order to determine the optimal sleep parameter and the maximum system utility function, we develop an improved Firefly intelligent searching Algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Systems Science and Systems Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.