Abstract

For recognition by the translational machinery, most eukaryotic cellular mRNAs have a 5' cap structure [e.g. m7G(5')ppp(5')N]. We describe a translation enhancer sequence (3'TE) located in the 3'-untranslated region (UTR) of the genome of the PAV barley yellow dwarf virus (BYDV-PAV) which stimulates translation from uncapped mRNA by 30- to 100-fold in vitro and in vivo to a level equal to that of efficient capped mRNAs. A four base duplication within the 3'TE destroyed the stimulatory activity. Efficient translation was recovered by addition of a 5' cap to this mRNA. Translation of both uncapped mRNA containing the 3'TE in cis and capped mRNA lacking any BYDV-PAV sequence was inhibited specifically by added 3'TE RNA in trans. This inhibition was reversed by adding initiation factor 4F (eIF4F), suggesting that the 3'TE, like the 5' cap, mediates eIF4F-dependent translation initiation. The BYDV-PAV 5'UTR was necessary for the 3'TE to function, except when the 3'TE itself was moved to the 5'UTR. Thus, the 3'TE is sufficient for recruiting the translation factors and ribosomes, while the viral 5'UTR may serve only for the long distance 3'-5' communication. Models are proposed to explain this novel mechanism of cap-independent translation initiation facilitated by the 3'UTR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.