Abstract

The Epstein-Barr virus (EBV) infects and transforms B-lymphocytes with high efficiency. This process requires expression of the viral latent proteins and of the 3 miR-BHRF1 microRNAs. Here we show that B-cells infected by a virus that lacks these non-coding RNAs (Δ123) grew more slowly between day 5 and day 20, relative to wild type controls. This effect could be ascribed to a reduced S phase entry combined with a moderately increased apoptosis rate. Whilst the first phenotypic trait was consistent with an enhanced PTEN expression in B-cells infected with Δ123, the second could be explained by very low BHRF1 protein and RNA levels in the same cells. Indeed, B-cells infected either by a recombinant virus that lacks the BHRF1 protein, a viral bcl-2 homolog, or by Δ123 underwent a similar degree of apoptosis, whereas knockouts of both BHRF1 microRNAs and protein proved transformation-incompetent. We find that that the miR-BHRF1-3 seed regions, and to a lesser extent those of miR-BHRF1-2 mediate these stimulatory effects. After this critical period, B-cells infected with the Δ123 mutant recovered a normal growth rate and became more resistant to provoked apoptosis. This resulted from an enhanced BHRF1 protein expression relative to cells infected with wild type viruses and correlated with decreased p27 expression, two pro-oncogenic events. The upregulation of BHRF1 can be explained by the observation that large BHRF1 mRNAs are the source of BHRF1 protein but are destroyed following BHRF1 microRNA processing, in particular of miR-BHRF1-2. The BHRF1 microRNAs are unlikely to directly target p27 but their absence may facilitate the selection of B-cells that express low levels of this protein. Thus, the BHRF1 microRNAs allowed a time-restricted expression of the BHRF1 protein to innocuously expand the virus B-cell reservoir during the first weeks post-infection without increasing long-term immune pressure.

Highlights

  • The Epstein-Barr virus (EBV) is the first discovered tumor human virus and is etiologically associated with approximately 2% of all tumors worldwide [1, 2]

  • This paper explains some of the molecular mechanisms used by the Epstein-Barr virus (EBV) BHRF1 microRNA cluster to enhance transformation of B-cells after infection

  • We find that B-cells exposed to a virus that lacks the BHRF1 microRNAs (Δ123) undergo more apoptosis and grow more slowly between the second and the fourth weeks after infection than cells infected by an intact virus

Read more

Summary

Introduction

The Epstein-Barr virus (EBV) is the first discovered tumor human virus and is etiologically associated with approximately 2% of all tumors worldwide [1, 2]. E.g. caused by immunosuppressive regimen is a strong risk factor for the development of EBV-associated lymphomas [2]. These tumors are thought, at least to some extent, to reflect EBV’s ability to transform primary B-cells [2]. Its enhanced expression in Wp-restricted BLs leads to a markedly enhanced resistance to apoptosis induced by ionomycin [11, 13] Both the BHRF1 protein and the BHRF1 miRNAs have been implicated in the regulation of apoptosis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.