Abstract

Cytotoxic T lymphocytes lyse target cells after T-cell-receptor-mediated recognition of class I major histocompatibility complex molecules presenting peptides. Antigenic peptides are generated in the cytoplasm by proteasomes and translocated into the lumen of the endoplasmic reticulum (ER) by peptide transporters (TAP). Herpes simplex virus (HSV) expresses a cytoplasmic protein, ICP47, which seems to interfere with such immune surveillance by mediating retention of 'empty' class I molecules in the ER. By expressing ICP47 in HeLa cells under an inducible promoter, we show that ICP47 efficiently inhibits peptide transport across the ER membrane such that nascent class I molecules fail to acquire antigenic peptides. This inhibition was overcome by transfecting murine TAP. Further, we demonstrate that ICP47 colocalizes and physically associates with TAP within the cell. Inhibition of peptide translocation by a viral protein indicates a previously undocumented potential mechanism for viral immune evasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call