Abstract
A problem that has hindered the study of the biological properties of certain DNA adducts, such as those that form at the N7 atoms of purines, is their extreme chemical lability. Conditions are described for the construction of a single-stranded genome containing the chemically and thermally labile 8,9-dihydro-8- (N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) adduct, the major DNA adduct of the potent liver carcinogen aflatoxin B1 (AFB1). A 13mer oligonucleotide, d(CCTCTTCGAACTC), was allowed to react with the exo-8,9-epoxide of AFB1 to form an oligonucleotide containing a single AFB1-N7-Gua (at the underlined guanine). This modified 13mer was 5'-phosphorylated and ligated into a gap in an M13 bacteriophage genome generated by annealing a 53mer uracil-containing scaffold to M13mp7L2 linearized by EcoRI. Following ligation, the scaffold was enzymatically removed with uracil DNA glycosylase and exonuclease III. The entire genome construction was complete within 3 h and was carried out at 16 degrees C, pH 6.6, conditions determined to be optimal for AFB1-N7-Gua stability. Characterization procedures indicated that the AFB1-N7-Gua genome was approximately 95% pure with a small (5%) contamination by unmodified genome. This construction scheme should be applicable to other chemically or thermally unstable DNA adducts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.