Abstract

BackgroundCellulose nanocrystalline (CNC) particles possess unique functional properties such as vastly modifiable surface, considerable mechanical strength and acid resistance, as well as, high aspect ratio. CNCs have received great attention for application in diverse fields of technology including (composite) hydrogels fabrication for the gastric protection and enteral delivery of drugs and nutraceuticals. Scope and approachThe orogastrointestinal digestibility and absorbability of the orally administered CNCs is overviewed in the current article. At first, some surface charge-related characteristics of acid-isolated CNCs are communicated. Then, the biocompatibility and biodegradability of CNCs and CNC-reinforced hydrogels are reviewed, followed by presenting credible digestion and absorption scenarios. Finally, the post-absorption metabolism of CNCs is briefly debated. Key findings and conclusionsBacterial cellulose shows good biocompatibility and hemocompatibility. CNC oxidation provides biologically beneficial impacts; for instance, the TEMPO- and periodate-oxidized CNCs have been shown to regulate some blood metabolic variables and improve the degradability in simulated human blood plasma, respectively. Spherical and carboxyl-bearing cellulose nanoparticles can be isolated through ammonium persulfate digestion. The sphericity of particles results in faster cellular uptake. Negatively-charged CNCs are non-mucoadhesive and thus upon ingestion can penetrate into the buccal and intestinal mucosa. One may augment the absorption of CNCs by targeted receptor-mediated endocytosis. It was postulated that sodium bicarbonate secretion into the duodenum can alter CNCs surface chemistry and influence CNC interaction with gut microbiota.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call