Abstract

With the development of virtual reality (VR) technology, the future of VR systems is evolving from single-user wired connections to multi-user wireless connections. However, wireless online rendering and transmission incur extra processing and transmission latency, as well as higher bandwidth requirements. To meet the requirements of wireless VR applications and enhance the quality of the VR user experience, this paper designs a view synthesis-based 360° VR caching system over Cloud Radio Access Network (C-RAN), where both mobile edge computing (MEC) and hierarchical caching are supported. In the system, an MEC-Cache Server is deployed in the pooled Base band Units (BBU pool) and used for view synthesis and caching. In addition, the remote radio heads (RRHs) can also cache some video contents. If the requested content of a specific view is cached in the BBU pool or RRHs, or can be synthesized with the aid of the cached adjacent views, it is unnecessary to request the content from the remote VR video source server. Therefore, the transmission latency and backhaul traffic load for VR services can be decreased. We formulate a hierarchical collaborative caching problem aiming to minimize the transmission latency, which is proved NP-hard. To address the impractical expenses of the offline optimal method, an online MaxMinDistance caching algorithm with low complexity is proposed. Numerical simulation results demonstrate that the proposed caching strategy provides significantly improved cache hit rate, backhaul traffic load, transmission latency, and Quality of Experience (QoE) performances relative to conventional caching strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.