Abstract

The adsorption of ethanol-d0, -d3, and -d6 on Si(100) has been studied in the mid- to far-infrared region using surface infrared absorption spectroscopy. The acquisition of infrared spectra in this frequency range (<1450 cm−1) is made possible by using specially prepared Si(100) wafers which have a buried metallic CoSi2 layer that acts as an internal mirror. We find that ethanol dissociatively adsorbs across the Si(100) dimers near room temperature to form surface bound hydrogen and ethoxy groups. Furthermore, the ethoxy groups are oriented such that the C3v axis of the methyl group is nearly perpendicular to the surface, unlike the case for ethoxy groups bound to metal surfaces. This adsorption geometry is deduced on the basis of the surface dipole selection rule, which applies to these Si(100) samples with a buried CoSi2 layer. Ab initio cluster calculations using gradient-corrected density functional methods confirm the proposed adsorption geometry for ethoxy on Si(100) and accurately reproduce the observed normal mode frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.