Abstract

Based on their three-dimensional mode shapes, the vibrational modes of free finite length thick cylinders can be classified into 6 categories, consisting of pure radial, radial motion with radial shearing, extensional, circumferential, axial bending, and global modes. This classification, together with the numbers of both the circumferential and the longitudinal nodes, is sufficient to identify each mode of a finite length thick cylinder. The mode classification was verified experimentally by measurements on a thick cylinder. According to the displacement distribution ratio in the radial, tangential and longitudinal directions, the effect of varying cylinder length on the vibrational modes is such that all the modes can be broadly categorized as either pure radial modes, or non pure radial modes. The natural frequencies and mode shapes of the former are dependent upon only the radial dimensions of the models, while the natural frequencies and mode shapes of the latter are dependent upon both the axial length and radial thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call