Abstract

The relative motion between a ball bearing outer race and the bearing’s cartridge was investigated. The investigation was part of a larger program, the objective of which was to examine the important parameters influencing fretting corrosion in rolling element bearings. The bearing examined was a 320 size, deep grooved, ABEC 7 ball bearing used in a ship board motor-generator unit. Three axes of acceleration signatures were simultaneously recorded from the outer race and cartridge. These acceleration signatures were Fourier transformed, averaged, and integrated twice to obtain displacement frequency spectrums. Corresponding displacements were vectorially subtracted to produce the relative motion between the outer race and the cartridge. Two load cases (0 and 100 percent load) and two frequency ranges (15 to 500 Hz and 500 Hz to 10 kHz) are examined. The resulting relative motion spectrums were complex with the bearing’s forcing frequencies dominating the spectrums below 250 Hz and rotor imbalance causing the highest spectral component of relative displacement (4.30 μm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.