Abstract

Low ungulate density can be a factor in limiting tiger populations, so to better manage tiger reserves one must be able assess if this is the case or if other factors might be more important. Here, we quantify ungulate density in a tiger reserve in India, compare it to other reserves, and estimate the tiger carrying capacity in order to assess this reserve can support a viable tiger population. Specifically, we studied the Similipal Tiger Reserve (STR), Odisha, India, from 2011 to 2014. The line transect method was used to estimate population density of available major ungulate prey species, i.e. sambar Rusa unicolor, wild pig Sus scrofa, barking deer Muntiacus muntjac, chital Axis axis and mouse deer Moschiola indica. A remarkable increase in ungulate prey density was noted in the intensive study area over the study period from 4.3 animals per km2 in the pre-monsoon season of 2011 to 28.9 animals per km2 in the post-monsoon season of 2014. This estimated ungulate density is very low compared to other tiger reserves of India. Density figures of ungulates when multiplied with the average weight of the respective species gave a biomass density of 1599.4 kg km-2. This data was then used in two published empirical models to obtain estimates of tiger carrying capacity in STR. We used two empirical models from the published literature and concluded that the tiger carrying capacity of Similipal Tiger Reserve ranges between 1.3 and 3.8 tigers per 100 km2, much lower than our current estimates of tiger density. This suggests that the tiger population is below carrying capacity or that the estimated tiger population in critical tiger habitat falls below the threshold number. We suggest that the creation of large meadows for herbivores and the establishment of suitable fenced areas to augment breeding of the prey species chital and sambar are necessary to support a viable tiger population in the Similipal Tiger Reserve.

Highlights

  • BioOne Complete is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses

  • We suggest that the creation of large meadows for herbivores and the establishment of suitable fenced areas to augment breeding of the prey species chital and sambar are necessary to support a viable tiger population in the Similipal Tiger Reserve

  • The study area was found to harbour a low ungulate density which gradually increased over time

Read more

Summary

Introduction

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. A remarkable increase in ungulate prey density was noted in the intensive study area over the study period from 4.3 animals per km in the premonsoon season of 2011 to 28.9 animals per km in the post-monsoon season of 2014 This estimated ungulate density is very low compared to other tiger reserves of India. Density figures of ungulates when multiplied with the average weight of the respective species gave a biomass density of 1599.4 kg km–2 This data was used in two published empirical models to obtain estimates of tiger carrying capacity in STR. We used two empirical models from the published literature and concluded that the tiger carrying capacity of Similipal Tiger Reserve ranges between 1.3 and 3.8 tigers per 100 km, much lower than our current estimates of tiger density. Ungulate depletion is thought to be a major factor driving the current decline of wild tiger Panthera tigris populations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call