Abstract
Change detection (CD), as a special remote-sensing (RS) segmentation task, faces challenges, including alignment errors and illumination variation, dense small targets, and large background intraclass variance in very high-resolution (VHR) remote-sensing images. Recent methods have avoided the misjudgment caused by illumination variation and alignment errors by increasing the ability of global modeling, but the latter two problems have still not been fully addressed. In this paper, we propose a new CD model called SFCD, which increases the feature extraction capability for small targets by introducing a shifted-window (Swin) transformer. We designed a foreground-aware fusion module to use attention gates to trim low-level feature responses, enabling increased attention to the changed region compared to the background when recovering the changed region, thus reducing background interference. We evaluated our model on two CD datasets, LEVIR-CD and CDD, and obtained F1 scores of 91.78 and 97.87, respectively. The experimental results and visual interpretation show that our model outperforms several previous CD models. In addition, we adjusted the parameters and structure of the standard model to develop a lightweight version that achieves an accuracy beyond most models with only 1.55 M parameters, further validating the effectiveness of our design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.