Abstract

Xenopus laevis oocytes are used extensively in the study of ion channel coupled receptors. Efficient use of oocytes for ion channel characterization requires a system that is inherently stable, reproducible, minimizes drug volumes, and maximizes oocyte longevity. We have constructed a vertical flow oocyte recording chamber to address the aforesaid issues, where the oocyte is placed in a funnel-shaped chamber and perfused from the bottom of the funnel. The vertical rather than horizontal flow of perfusate results in an unusually stable environment for oocyte recording. Two-electrode voltage clamp recordings from a single oocyte are acquired easily and routinely over several hours while maintaining stable baseline currents and reproducible response profiles. Chamber characteristics were tested using a serotonin ligand-gated ion channel receptor (5-HT 3R). Data obtained from this system corresponds well with published data. To further test the stability and reliability of this perfusion chamber, we constructed an automated oocyte perfusion system utilizing a commonly available HPLC autosampler. We were able to obtain dose–response curves for various 5-HT 3AR ligands using the automated perfusion system with minimal user intervention. Such a system can easily satisfy need for automated oocyte electrophysiology in academic settings, especially small to medium sized laboratories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.