Abstract
We propose a version of the volume conjecture that would relate a certain limit of the colored Jones polynomials of a knot to the volume function defined by a representation of the fundamental group of the knot complement to the special linear group of degree two over complex numbers. We also confirm the conjecture for the figure-eight knot and torus knots. This version is different from S. Gukov's because of a choice of polarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.