Abstract

During the last few years, the Characteristic Basis Function Method (CBFM) has been introduced to solve large-scale electromagnetic problems. The CBFM is a non-iterative domain decomposition approach that employs characteristic basis functions (CBFs), called the high-level physics-based basis functions, to represent the fields inside each sub-domain. This technique was first introduced to solve time-harmonic electromagnetic problems in the context of the Method of Moments (MoM) [1]. Quite recently, the CBFM procedure has been utilized for the first time in the Finite Element Method (FEM), and has been named the “Characteristic Basis Finite Element Method (CBFEM)” [2–4]. This method, which is different from the previous MoM-based CBFM, has been used in both the quasi-static [2] and the time-harmonic regimes [3–4], by generating the CBFs via point charges and dipole-type sources, respectively. Two major features of the CBFEM are: (i) it leads to a reduced-matrix that can be handled by using direct—as opposed to iterative—solvers; and (ii) its parallelizable nature can be taken advantage of to reduce the overall computation time. The basic steps of the CBFEM algorithm are summarized as follows: (i) Divide the computational domain into a number of subdomains; (ii) Generate the CBFs that are tailored to each individual subdomain; (iii) Express the unknowns as a weighted sum of CBFs; (iv) Transform the original matrix into a smaller one (called reduced-matrix) by using the Galerkin procedure, which uses the CBFs as both basis and testing functions; (v) Solve the reduced matrix for the weight coefficients, and substitute the coefficients into the series expressions to find the unknowns inside the entire computational domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call