Abstract

Fluorescence microscopes are indispensable tools for the life science research community. Nevertheless, the presence of optical component limitations, coupled with the maximum photon budget that the specimen can tolerate, inevitably leads to a decline in imaging quality and a lack of useful signals. Therefore, image restoration becomes essential for ensuring high-quality and accurate analyses. This paper presents the Wavelet-Enhanced Convolutional-Transformer (WECT), a novel deep learning technique developed specifically for the purpose of reducing noise in microscopy images and attaining super-resolution. Unlike traditional approaches, WECT integrates wavelet transform and inverse-transform for multi-resolution image decomposition and reconstruction, resulting in an expanded receptive field for the network without compromising information integrity. Subsequently, multiple consecutive parallel CNN-Transformer modules are utilized to collaboratively model local and global dependencies, thus facilitating the extraction of more comprehensive and diversified deep features. In addition, the incorporation of generative adversarial networks (GANs) into WECT enhances its capacity to generate high perceptual quality microscopic images. Extensive experiments have demonstrated that the WECT framework outperforms current state-of-the-art restoration methods on real fluorescence microscopy data under various imaging modalities and conditions, in terms of quantitative and qualitative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.