Abstract

A versatile Reed-Solomon (RS) decoder structure based on the time-domain decoding algorithm (transform decoding without transforms) is developed. The algorithm is restructured, and a method is given to decode any RS code generated by any generator polynomial. The main advantage of the decoder structure is its versatility, that is, it can be programmed to decode any Reed-Solomon code defined in Galois field (GF) 2/sup m/ with a fixed symbol size m. This decoder can correct errors and erasures for any RS code, including shortened and singly extended codes. It is shown that the decoder has a very simple structure and can be used to design high-speed single-chip VLSI decoders. As an example, a gate-array-based programmable RS decoder is implemented on a single chip. This decoder chip can decode any RS code defined in GF (2/sup 5/) with any code word length and any number of information symbols. The decoder chip is fabricated using low-power 1.5- mu , two-layer-metal, HCMOS technology. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.