Abstract

Despite the significant progress in fabricating hybrid organic–inorganic lead halide perovskite solar cells, their toxicity and low stability remain as major drawbacks, thereby hindering large-scale commercialization. Given the isoelectronic nature of lead(II) and bismuth(III) ions, potentially stable and nontoxic alternatives for efficient light absorption in thin-film photovoltaic (PV) devices may be found among bismuth-based halide semiconductors. However, high-quality polycrystalline films of many of these systems have not been demonstrated. Here we present a versatile and facile two-step coevaporation approach to fabricate A3Bi2I9 (A = Cs, Rb) and AgBi2I7 polycrystalline films with smooth, pinhole-free morphology and average grain size of >200 nm. The process involves an initial two-source evaporation step (involving CsI, RbI or AgI, and BiI3 sources), followed by an annealing step under BiI3 vapor. The structural, optical, and electrical characteristics of the resulting thin films are studied by X-r...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.