Abstract
We report a simplistic approach that employs complexation between poly(N-allylglycine) modified with 3-mercaptoacetic acid (PNAG-COOH) and a series of metal ions to construct a new type of supramolecular architecture with intriguing features that enable a versatile and advanced nanoplatform. In most cases, such complexation results in nanoscale vesicles with superior stability, which differs significantly from the precipitates of conventional carbon-chain polymers and polypeptides. We attribute this to the polar tertiary amide groups in the polypeptoid backbone that offer excellent water affinity and numerous noncovalent molecular interactions. Particularly, the PNAG-COOH/Fe2+ complex can generate reactive oxygen species via a Fenton reaction in the presence of H2O2, thus causing ferroptosis selectively in the tumor cell. In addition, a H2O2-modulated intracellular in situ morphology transition enables prompt release of doxorubicin, representing a synergistic target antitumor efficacy. The prepared supramolecular platforms present promising candidates for many applications, considering the ability to assemble with various metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.