Abstract

The exploration of a facile approach to create structurally versatile substances carrying air-stable radicals is highly desired, but still a huge challenge in chemistry and materials science. Herein, a non-contact method to generate air-stable radicals by exposing pyridine/imidazole ring-bearing substances to volatile cyanuric chloride vapor, harnessed as a chemical fuel is reported. This remarkable feat is accomplished through a nucleophilic substitution reaction, wherein an intrinsic electron transfer event transpires spontaneously, originating from the chloride anion (Cl- ) to the cationic nitrogen (N+ ) atom, ultimately giving rise to pyridinium/imidazolium radicals. Impressively, the generated radicals exhibit noteworthy stability in the air over one month owing to the delocalization of the unpaired electron through the extended and highly fused π-conjugated pyridinium/imidazolium-triazine unit. Such an approach is universal to diverse substances, including organic molecules, metal-organic complexes, hydrogels, polymers, and organic cage materials. Capitalizing on this versatile technique, surface radical functionalization can be readily achieved across diverse substrates. Moreover, the generated radical species showcase a myriad of high-performance applications, including mimicking natural peroxidase to accelerate oxidation reactions and achieving high-efficiency near-infrared photothermal conversion and photothermal bacterial inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call