Abstract
A fluorescent molecule, pyridine-coupled bis-anthracene (PBA), has been developed for the selective fluorescence turn-on detection of Cu2+. Interestingly, the ligand PBA also exhibited a red-shifted ratiometric fluorescence response in the presence of water. Thus, a ratiometric water sensor has been utilized as a selective fluorescence turn-on sensor for Cu2+, achieving a 10-fold enhancement in the fluorescence and quantum yield at 446 nm, with a lower detection limit of 0.358 μM and a binding constant of 1.3 × 106 M-1. For practical applications, sensor PBA can be used to detect Cu2+ in various types of soils like clay soil, field soil and sand. The interaction of the PBA-Cu(II) complex with transport proteins like bovine serum albumin (BSA) and ct-DNA has been investigated through fluorescence titration experiments. Additionally, the structural optimization of PBA and the PBA-Cu(II) complex has been demonstrated by DFT, and the interaction of the PBA-Cu(II) complex with BSA and ct-DNA has been analyzed using theoretical docking studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analytical methods : advancing methods and applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.