Abstract
Various nuclear processes, such as transcriptional control, occur within discrete structures known as foci that are discernable through the immunofluorescence technique. Investigating the dynamics of these foci under diverse cellular conditions via microscopy yields valuable insights into the molecular mechanisms governing cellular identity and functions. However, performing immunofluorescence assays across different cell types and assessing alterations in the assembly, diffusion, and distribution of these foci present numerous challenges. These challenges encompass complexities in sample preparation, determination of parameters for analyzing imaging data, and management of substantial data volumes. Moreover, existing imaging workflows are often tailored for proficient users, thereby limiting accessibility to a broader audience. In this study, we introduce an optimized immunofluorescence protocol tailored for investigating nuclear proteins in different human primary T cell types that can be customized for any protein of interest and cell type. Furthermore, we present a method for unbiasedly quantifying protein staining, whether they form distinct foci or exhibit a diffuse nuclear distribution. Our proposed method offers a comprehensive guide, from cellular staining to analysis, leveraging a semi-automated pipeline developed in Jython and executable in Fiji. Furthermore, we provide a user-friendly Python script to streamline data management, publicly accessible on a Google Colab notebook. Our approach has demonstrated efficacy in yielding highly informative immunofluorescence analyses for proteins with diverse patterns of nuclear organization across differentcontexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.