Abstract
The Kluyveromyces lactis killer toxin zymocin insensitive 11 (KTI11) gene from Saccharomyces cerevisiae is allelic with the diphthamide synthesis 3 (DPH3) locus. Here, we present evidence that the KTI11 gene product is a versatile partner of proteins and operates in multiple biological processes. Notably, Kti11 immune precipitates contain Elp2 and Elp5, two subunits of the Elongator complex which is involved in transcription, tRNA modification and zymocin toxicity. KTI11 deletion phenocopies Elongator-minus cells and causes antisuppression of nonsense and missense suppressor tRNAs (SUP4, SOE1), zymocin resistance and protection against the tRNase attack of zymocin. In addition and unlike Elongator mutants, kti11 mutants resist diphtheria toxin (DT), protect against ADP-ribosylation of eukaryotic translation elongation factor 2 (eEF2) by DT and induce resistance against sordarin, an eEF2 poisoning antifungal. The latter phenotype applies to all diphthamide mutants (dph1-dph5) tested and Kti11/Dph3 physically interacts with diphthamide synthesis factors Dph1 and Dph2, presumably as part of a trimeric complex. Moreover, we present a separation of function mutation in KTI11, kti11-1, which dissociates zymocin resistance from DT sensitivity. It encodes a C-terminal Kti11 truncation that almost entirely abolishes Elongator interaction without affecting association with Kti13, another Kti11 partner protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.