Abstract
The paper discusses a versatile family of Monte Carlo methods for the sequential optimization of stochastic systems. The method selects a sequence of successive one-dimensional search directions, defines a (stochastic) search in each of the directions, where the data used for both the one-dimensional search and the direction determination are merely noise-corrupted observations on the system. The method is more general than stochastic approximation, it converges to a stationary point even in the presence of multiple minima, and it uses rather natural logics. A convergence theorem is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.