Abstract

We describe a method for constructing a fiber-optic-based dynamic light scattering (DLS) instrument from commonly available components, without a need for custom-made parts. Details are provided that allow for academic researchers from diverse backgrounds to build this DLS instrument with minimal effort and at a low cost. This approach, while providing good sensitivity and high accuracy (e.g., measuring the size of latex standards to within 1% relative standard deviation), possesses several advantages not found, in their entirety, in existing DLS instrumentation. It was observed that, even though an arbitrary scattering angle could be selected, aligning this instrument to obtain optimal detection efficiency can be completed in as little as a few minutes. Also, complications associated with light refraction at the sample cell interface are avoided. Small volumes (<10 µL) can be measured, for example, by hanging a solution droplet from the fiber optic probe tips. In addition, use of fiber optic probes allows the beam path length to be as short as 1.6 mm while measuring at 90°, which reduces the likelihood of multiple scattering. With minimal customization, compact submersible probes and a portable battery-operated DLS instrument were made as examples of potential implementation. Finally, this approach is versatile, and can be incorporated into a wide variety of reactors, for in situ characterization, and other instrumentation for hybrid measurements. This type of in situ measurement was conducted after mounting the DLS probes inside a standard three-neck flask. This allowed for direct monitoring of the growth of silica nanoparticles prepared via Stöber synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call