Abstract
Models of biological barriers are important to study physiological functions, transport mechanisms, drug delivery and pathologies. However, there are only a few integrated biochips which are able to monitor several of the crucial parameters of cell-culture-based barrier models. The aim of this study was to design and manufacture a simple but versatile device, which allows a complex investigation of barrier functions. The following functions and measurements are enabled simultaneously: co-culture of 2 or 3 types of cells; flow of culture medium; visualization of the entire cell layer by microscopy; real-time transcellular electrical resistance monitoring; permeability measurements. To this end, a poly(dimethylsiloxane)-based biochip with integrated transparent gold electrodes and with a possibility to connect to a peristaltic pump was built. Unlike previous systems, the structure of the device allowed a constant visual observation of cell growth over the whole membrane surface. Morphological characterization of the layers was also accomplished by immunohistochemical staining. The chip was applied to monitor and characterize models of the intestinal and lung epithelial barriers, and the blood–brain barrier. The models were established using human Caco-2 intestinal and A549 lung epithelial cell lines, hCMEC/D3 human brain endothelial cell line and primary rat brain endothelial cells co-cultured with primary astrocytes and brain pericytes. This triple primary co-culture blood–brain barrier model was assembled on a lab-on-a-chip device and investigated under fluid flow for the first time. Such a versatile tool is expected to facilitate the kinetic investigation of various biological barriers.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.