Abstract

The conversion of biomass into valuable carbon composites as efficient non-precious metal oxygen-reduction electrocatalysts is attractive for the development of commercially viable polymer electrolyte membrane fuel-cell technology. Herein, a versatile iron-tannin-framework ink coating strategy is developed to fabricate cellulose-derived Fe3 C/Fe-N-C catalysts using commercial filter paper, tissue, or cotton as a carbon source, an iron-tannin framework as an iron source, and dicyandiamide as a nitrogen source. The oxygen reduction performance of the resultant Fe3C/Fe-N-C catalysts shows a high onset potential (i.e. 0.98 V vs the reversible hydrogen electrode (RHE)), and large kinetic current density normalized to both geometric electrode area and mass of catalysts (6.4 mA cm(-2) and 32 mA mg(-1) at 0.80 V vs RHE) in alkaline condition. This method can even be used to prepare efficient catalysts using waste carbon sources, such as used polyurethane foam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.