Abstract

Platinum complexes remain frontline anticancer therapies, even after 50 years of usage in clinical applications. However, there is still a lack of methodology to robustly detect and quantify these complexes in biological fluids. We report here a fluorescent sensor array comprising six sensors that demonstrates progress toward the detection of platinum levels in chemotherapy patients. Linear discriminant analysis was performed to examine each multidimensional data set, and the array was able to discriminate platinum from other biologically relevant metals and heavy metals and separately able to differentiate and identify platinum complexes with different coordination environments with 100% accuracy. Finally, the array showed sensitivity to various cisplatin and oxaliplatin concentrations in human plasma and was able to discriminate between a cohort of 27 cancer patients at different stages of platinum treatment. We envisage that our array system could lead to a better understanding of blood platinum concentrations of chemotherapy patients and could inform the modification of dosage regimes to minimize dose-limiting side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.