Abstract

This paper describes an experimentally simple method for assembling junctions with nanometer-scale, structured organic films positioned between two metal electrodes. These junctions comprise two metal electrodes that sandwich two self-assembled monolayers (SAMs) – that is, metal (mercury)–SAM//SAM–metal (mercury, gold or silver) junctions. The junctions are easy to assemble (because the mercury electrode is compliant) and they are compatible with SAMs incorporating organic groups having a range of structures. This paper describes three different variations on this type of Hg-based junction. The first junction, formed by two contacting mercury drops covered by the same type of SAM, is a prototype system that provided useful information on the structure and electrical properties of the Hg-based junctions. The second junction consists of a Hg drop covered by one SAM (Hg–SAM(1)) in contact with a second SAM supported on a silver film (Ag–SAM(2)) – that is, a Hg–SAM(1)//SAM(2)–Ag junction. This junction allowed systematic measurements of the current that flowed across SAM(2), as a function of structure (for example, using aliphatic or aromatic thiols of different length), and a common SAM(1) of hexadecane thiol. The current density follows the relation I= I 0e − βd Ag,Hg , where d Ag,Hg is the distance between the electrodes, and β is the structure-dependent attenuation factor for the molecules making up SAM(2): β was 0.87±0.1 A ̊ −1 for alkanethiols, 0.61±0.1 A ̊ −1 for oligophenylene thiols, and 0.67±0.1 A ̊ −1 for benzylic derivatives of oligophenylene thiols, in general agreement with the values calculated by other approaches. The same type of junction, but using SAM(1) and SAM(2) carrying suitable chemical groups, X and Y, was used to measure the rate of electron transfer across different types of functional groups and bonds: van der Waal interactions, H bonds, and covalent bonds. The third type of junction, Hg–SAM//R//SAM–Hg, is an electrochemical junction that can (i) trap redox-active molecules (R) in the interfacial region between the SAMs, and (ii) control the potential of the electrodes with respect to the redox potential of R using an external reference electrode. This system shows I–V curves with steps that can be interpreted in terms of redox cycling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call