Abstract

Enzymes play a crucial role in all living organisms by accelerating the rates of a myriad of biochemical reactions that are necessary to sustain life. Although the vast majority of known enzymes are made of protein, in recent years it has become increasingly apparent that other molecular formats, like nucleic acids, can also serve in this capacity. DNAzymes (also known as deoxyribozymes) are synthetic enzymes made of short, single strands of deoxyribonucleic acid. These DNA-based enzymes offer the prospect of significant commercial utility, because they are exceptionally stable and can be produced very easily and inexpensively. The study of one particular DNAzyme, known as "8-17", has enhanced our understanding of DNAzyme-mediated catalysis. Moreover, the function of 8-17 has been regarded with special importance because it can catalyze sequence-specific cleavage of RNA, a reaction that has broad implications in biotechnology and biomedical fields. In this review, we explore the creation, characterization, and application of the 8-17 RNA-cleaving DNAzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.