Abstract
Elastin-like polypeptidesare biotechnological protein and peptide carriers that offer a vast scope of applicability. This work aims to build a model for the expression of antimicrobial peptides (AMPs) by genetically engineering the Human Elastin-like Polypeptideplatform developed in the lab. The well-characterized AMP indolicidin is selected as an example of an antimicrobial domain for the recombinant fusion at the C-terminus of the carrier. The fusion construct has been designed to allow the release of the antimicrobial domain. The expression product has been purified and its physicochemical and antimicrobial properties has been characterized. Taking advantage of the self-assembling and matrix-forming properties of the recombinant biopolymer, the materials that are obtained have been evaluated for antimicrobial activity toward bacterial-strain models. This approach represents a cost-effective strategy for the production of smart components and materials endowed with antimicrobial capacity triggered by external stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.