Abstract

At present, the simultaneous removal of organic dyes and heavy metals in complex wastewater has raised considerable concern, owing to their striking differences in physicochemical properties. Adsorption, as one of the few removal methods, has attracted extensive attention and gained popularity. Herein, a versatile EDTA and chitosan bi-functionalized magnetic bamboo biochar adsorbent (ECMBB) was synthesized for coinstantaneous adsorption of methyl orange (MO) and heavy metals (Cd(II) and Zn(II)). In this case, the as-synthesized ECMBB composites inherited favorable anionic MO removal performance from bamboo biochar (BB) obtained at 700 °C through electrostatic attraction, hydrogen bonding and π-π interaction, also enhanced the binding of cationic metals by introducing amino groups of chitosan and carboxyl groups of EDTA. In the unitary system, the removal of MO, Cd(II) and Zn(II) by three as-prepared adsorbents can be well illuminated by pseudo-second-order kinetic model and Langmuir isotherm theory. The saturated capture amounts of ECMBB at 25 °C are 305.4 mg g−1 for MO, 63.2 mg g−1 for Cd(II) and 50.8 mg g−1 for Zn(II), which, under the same conditions, are 1.3, 2.6 and 2.5 times those of chitosan-modified magnetic bamboo biochar (CMBB) and 1.9, 6.1 and 5.4 times those of magnetic bamboo biochar (MBB), respectively. Remarkably, in MO-metal binary system, coexisting MO visibly enhanced the adsorption of Cd(II) and Zn(II), while coexisting heavy metals had no significant impact on MO adsorption. Furthermore, ECMBB exhibited no significant loss in adsorption efficiency even after eight adsorption-desorption experiments. This study lays the foundation for fabricating desired integrative biochar adsorbents in the simultaneous purification of organic and metallic pollutants from complex wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call