Abstract

Circulating extracellular vesicles (EVs) are considered as potential biomarkers for treatment and diagnosis of many diseases. Most of the existing methods for the EV analysis only have a single function and thus reveal limited information carried by EVs. Herein, a phosphatidylserine-targeting peptide-facilitated design that enables the versatile analysis of circulating EVs for varying requirement is proposed. In the design, DNA probes are inserted into the EV membrane through hydrophobic interactions, and accelerate the removal of protective shielding from DNA-gated metal-organic framework, thereby releasing a large number of methylene blue molecules to amplify the electrochemical signal. Electrochemical results demonstrate equally high sensitivities toward the quantification of EVs derived from different cell sources using an indiscriminative DNA probe. More importantly, the probe can be endowed with extended function for more accurate classification of cell-specific features through the identification of specific EV biomarkers, and demonstrates the potential use in the diagnosis of cardiovascular in a principle-of-proof study for clinical application. Therefore, the method provides a versatile design for the identification of EV features, and may address the needs of clinical diagnosis in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.