Abstract
Pathogen nucleic acid detection is of great significance to control the spread of diseases caused by the viruses. Nevertheless, traditional methods for nucleic acid detection such as polymerase chain reaction (PCR) and oligonucleotide microarrays require bulky instruments, which restrain their point-of-care (POC) testing application. Here, we proposed a POC method enabling sensitive detection of pathogen nucleic acids by combining the clustered regularly interspaced short palindromic repeat (CRISPR) Cas12a-based assay and personal glucometer readout (PGM). The quantification of target pathogen DNA by PGM was achieved based on pathogen DNA activates Cas12a ssDNase to cleave magnetic bead-DNA-invertase reporter probe, and separated free invertase to catalyze hydrolysis of sucrose to glucose. Without using nucleic acid amplification technology, we demonstrated here dual signal amplifications based on Cas12a and invertase-mediated catalytic reactions, making it possible to sensitively detect HIV-related DNA or SARS-CoV-2 pseudovirus with the limits of detection of 11.0 fM and 50 copies/μL, respectively. This strategy also showed excellent selectivity as well as potential applicability for detection of HIV in human serum samples or of SARS-CoV-2 in saliva samples. Therefore, our CRISPR-PGM-based dual signal amplifications detection platform might offer a great promise in POC diagnosis of pathogen nucleic acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.