Abstract
AbstractAqueous zinc metal batteries are receiving broad attention owing to their promising characteristics of low cost, high safety, and environmental benignity. However, severe side reactions over zinc metal anodes (i.e., dendrite growth and by‐product formation) dramatically limit their further development. Herein, the key problems are tackled by introducing a dual‐function electrolyte additive (ammonium cation‐based salts) to achieve long‐term and highly reversible zinc plating/stripping. Specifically, the cation can homogenize the zinc deposition via the charge shielding effect and inhibit by‐product formation by participating in the constitution of contact ion pairs. In such a way, the Zn||Zn symmetric cell stably cycles over 2145 h at a current density of 1 mA cm−2 with the overpotential of merely 25 mV. In addition, the reversibility of energy storage devices based on manganese dioxide and an activated carbon cathode is effectively enhanced. This strategy provides a promising approach for the future development of advanced aqueous metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.