Abstract

AbstractUsing amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.