Abstract

In this paper we present a novel GPU-based data structure for spatial indexing. Based on Fenwick trees-a special type of binary indexed trees-our data structure allows construction in linear time. Updates and prefixes can be computed in logarithmic time, whereas point queries require only constant time on average. Unlike competing data structures such as summed-area tables and spatial hashing, our data structure requires a constant amount of bits for each data element, and it offers unconstrained point queries. This property makes our data structure ideally suited for applications requiring unconstrained indexing of large data, such as block-storage of large and block-sparse volumes. Finally, we provide asymptotic bounds on both run-time and memory requirements, and we show applications for which our new data structure is useful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.