Abstract

Memristor appeals to a wide research field as the fourth passive element, and its model has been a necessary topic for future circuit applications. In this letter, a novel compact model of memristor, based on the equivalent resistor topology of variable conductive filaments, is presented. Since the formation and annihilation of conductive filaments is a natural mechanism of mainstream memristor, the model is essential and so more accurate than those nonlinear dopant drift models. On the other hand, the equivalent resistor idea makes our model versatile and efficient comparing with some complex physical process methods, and fulfills the requirements of circuit design. The versatility and accuracy of our compact model have been verified by the results that it can reduce at least 30% error in a Pt/TiO2/TiO2+ x /Pt type memristor and at least 20% error in a Ta/TaO x /Pt type memristor, comparing with some popular models. Moreover it is easier to be implemented in Verilog-A, which possesses more flexibility and higher applicability in circuit design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.