Abstract
Structural pounding and oscillations have been extensively investigated by using ordinary differential equations (ODEs). In many applications, force functions are defined by piecewise continuously differentiable functions and the ODEs are nonsmooth. Implicit Runge–Kutta (IRK) methods for solving the nonsmooth ODEs are numerically stable, but involve systems of nonsmooth equations that cannot be solved exactly in practice. In this paper, we propose a verified inexact IRK method for nonsmooth ODEs which gives a global error bound for the inexact solution. We use the slanting Newton method to solve the systems of nonsmooth equations, and interval method to compute the set of matrices of slopes for the enclosure of solution of the systems. Numerical experiments show that the algorithm is efficient for verification of solution of systems of nonsmooth equations in the inexact IRK method. We report numerical results of nonsmooth ODEs arising from simulation of the collapse of the Tacoma Narrows suspension bridge, steel to steel impact experiment, and pounding between two adjacent structures in 27 ground motion records for 12 different earthquakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.