Abstract

Breathing motion severely degrades the quality of magnetic resonance images (MRI) of the thorax and upper abdomen and interferes with the acquisition of quantitative data. To minimize these motion effects, we built an MRI compatible ventilator for use in animal studies. Solid state circuitry is used for controlling ventilation parameters. The ventilator can be triggered internally at frequencies of 0.1 to 30 Hz or it can be triggered externally such as by the MRI pulse sequence. When triggered by the scanner, ventilation is synchronized to occur between image data acquisitions. Thus, image data are obtained when there is no breathing motion and at a minimum lung volume when hydrogen density is maximum. Since the ventilator can be adjusted to operate at virtually any frequency from conventional to high frequency, ventilation can be synchronized to all commonly used repetition times (100 ms to 2000 ms or more; 600 to 30 breaths/min). Scan synchronous ventilation eliminates breathing motion artifacts from most imaging sequences (single and multiple spin echo and inversion recovery). Best image quality is obtained when scan synchronous ventilation is combined with cardiac gating. These methods are also useful for quantitative research studies of thoracic and abdominal organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.