Abstract

It is important to measure the global and/or local velocity of an in-pipe metallic flow to control its running state in applications such as a Tokamak fusion reactor. The magnetic field outside the pipe wall will be perturbed by the motion induced eddy current when the liquid metal flows across an applied static magnetic field. This phenomenon gives a possibility to evaluate the in-pipe velocity from the measured magnetic field perturbation signals. In this paper, a non-intrusive velocity evaluation method is proposed accordingly for measuring the velocity of liquid metal through measurement and inversion of the magnetic field surrounding the pipe. An efficient forward simulation method to calculate the magnetic field near a metallic flow in a static environmental magnetic field is developed at first. An inversion scheme based on the singular value decomposition and the L-curve method is then proposed to reconstruct the velocity distribution at a pipe cross-section with the linear equations correlating the flow velocity and the magnetic field regulated using the Tikhonov method. The reconstruction results of pipe flows of different velocity modes verified the feasibility and efficiency of the proposed velocity measurement method for in-pipe metallic flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call