Abstract
The bridge pavement subjected to vehicle loads is the most vulnerable component in the highway bridge and overloaded vehicles can result in serious damage to the bridge pavement more easily. Therefore, it is necessary to consider the pavement in vehicle-bridge interaction (VBI) system. However, the bridge pavement is not considered in the traditional VBI system or the viscoelasticity of bridge pavement is ignored. In this study, a new vehicle-pavement-bridge interaction (VPBI) system is established. The viscoelastic asphalt pavement is simulated with the continuously and uniformly distributed spring-damper. The equivalent stiffness coefficient and equivalent damping coefficient of the pavement are determined through dynamic mechanical analysis (DMA) test and finite element method. The equations of motion for VPBI system can be derived using Lagrange equation and the modal superposition method. Then the crucial parameters such as displacement at mid-span of bridge, acceleration of vehicle body, tire contact force, and pavement deformation are obtained. The effects of vehicle velocity, bridge span, tire contact area, pavement stiffness coefficient, and pavement damping coefficient on VPBI responses are analyzed. The results show that (1) The pavement is compressive during vehicle passing bridge and its dynamic deformation fluctuates around initially static deformation of pavement. (2) Increasing the stiffness of pavement can rapidly reduce the deformation of pavement, while the pavement damping has the opposite effect. (3) The increase of bridge span can conduct exponentially growth of dynamic responses of VPBI system. The pavement deformation will increase by 7.9% if the bridge span is lengthened by 5 m. This study provides a reliability response analysis method for VPBI system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Low Frequency Noise, Vibration and Active Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.