Abstract

In this paper, we present an implementation of a vectorizing C compiler for Intel's MMX (Multimedia Extension). This compiler would identify data parallel sections of the code using scalar and array dependence analysis. To enhance the scope for application of the subword semantics, our compiler performs several code transformations. These include strip mining, scalar expansion, grouping and reduction, and distribution. Thereafter inline assembly instructions corresponding to the data parallel sections are generated. We have used the Stanford University Intermediate Format (SUIF), a public domain compiler tool, for our implementation. We evaluated the performance of the code generated by our compiler for a number of benchmarks. Initial performance results reveal that our compiler generated code produces a reasonable performance improvement (speedup of 2 to 6.5) over the the code generated without the vectorizing transformations/inline assembly. In certain cases, the performance of the compiler generated code is within 85% of the hand-tuned code for MMX architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.