Abstract

Intracellular recording and immunochemical techniques were used to study synaptic transmission between individual pairs of rat myenteric plexus neurons in cell culture. This report describes the synaptic connections made by "dual function" presynaptic neurons that evoked slow postsynaptic depolarizations (slow EPSPs) in the same neurons in which they also evoked fast nicotinic cholinergic EPSPs. The slow EPSPs occurred only when presynaptic neurons were stimulated at frequencies of 5 Hz or higher. During the slow EPSPs, slope input resistance increased. The slow EPSPs were not detectably voltage-dependent, and they reversed sign at the estimated K+ equilibrium potential, suggesting that they resulted from a synaptically mediated decrease in resting K+ conductance. Several lines of evidence suggested that dual-function neurons evoke slow EPSPs by releasing a vasoactive intestinal peptide (VIP)-like cotransmitter. (1) Immunocytochemical staining revealed VIP-like immunoreactivity in all physiologically identified dual-function neurons. (2) Responses to exogenously applied VIP mimicked the slow EPSPs. (3) Superfusion of cultures with anti-VIP antisera blocked the slow EPSPs reversibly, as did application of desensitizing doses of VIP. These findings suggest that during periods of increased activity, subsets of cholinergic myenteric neurons release a VIP-like cotransmitter that enhances postsynaptic excitability. The effects of the cotransmitter may help to compensate for decreases in nicotinic EPSPs that occur during increased presynaptic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.