Abstract

Isolated pig kidney has been widely used as a perfused organ phantom in the studies of hyperthermia treatments, as blood perfusion plays an essential role in thermoregulation of living tissues. In this research, a vascular model was built to describe heat transfer in the kidney phantom during water bath heating. The model accounts for conjugate heat transfer between the paired artery and vein, and their surrounding tissue in the renal medulla. Tissue temperature distribution in the cortex was predicted using the Pennes bioheat transfer equation. An analytical solution was obtained and validated experimentally for predicting the steady state temperature distribution in the pig kidney when its surface kept at a uniform constant temperature. Results showed that local perfusion rate significantly affected tissue temperature distributions. Since blood flow is the driving force of tissue temperature oscillations during hyperthermia, the newly developed vascular model provides a useful tool for hyperthermia treatment optimization using the kidney phantom model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call