Abstract
Most human traits are influenced by the interplay between genetic and environmental factors. Many statistical methods have been proposed to screen for gene-environment interaction (GxE) in the post genome-wide association study era. However, most of the existing methods assume a linear interaction between genetic and environmental factors toward phenotypic variations, which diminishes statistical power in the case of nonlinear GxE. In this paper, we present a flexible statistical procedure to detect GxE regardless of whether the underlying relationship is linear or not. By modeling the joint genetic and GxE effects as a varying-coefficient function of the environmental factor, the proposed model is able to capture dynamic trajectories of GxE. We employ a likelihood ratio test with a fast Monte Carlo algorithm for hypothesis testing. Simulations were conducted to evaluate validity and power of the proposed model in various settings. Real data analysis was performed to illustrate its power, in particular, in the case of nonlinear GxE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.